Как производят ламинированную фанеру

В связи с развитием монолитного строительства особое значение приобретают опалубочные системы, состоящие из металлического каркаса и ламинированной фанеры. Качество последней определяется гладкостью и ровностью поверхности, окраской и защитой торцов от влаги. Именно эти свойства позволяют использовать фанеру многократно.

Историческая справка

Первые станки для переработки древесины в шпон, а далее — в фанеру, были запатентованы еще в XVIII веке.

Первую модель лущильного станка в конце XVII века создал английский инженер-механик Сэмюэль Бентам, служивший Екатерине II по приглашению князя Потёмкина. По окончании 10-летней службы в России Бентам вернулся в Англию и получил патенты сразу на несколько своих изобретений. Впрочем, изобретенный англичанином станок не был замечен производителями тех времен.

Действительно эффективный прототип всех современных лущильных станков создал шведский инженер-изобретатель Эммануэль Нобель, отец Альфреда Нобеля, основателя Нобелевской премии. Созданная им в конце XVIII века модель ротационного (поворотного) токарного станка позволяла снимать с деревянного чурака шпон определенной и постоянной толщины, благодаря чему фанерный «сэндвич» становился однородным по структуре и толщине.

В начале XIX века русский промышленник Дитрих Мартин Лютер, владевший мануфактурой по производству карандашей в эстонском Ревеле (современный Таллинн), изобрел свой лущильный станок — более крупную версию станка для производства карандашей. Он получил патент на свое изобретение в 1819 году. Первая фанера, производство которой основывалось на станке Дитриха Мартина Лютера, была создана в конце XIX века эстонским мебельщиком Александром Лютером, (однофамильцем Мартина Лютера), который решил использовать склеенные между собой листы шпона в качестве сидений для венских стульев. Мебель получилась легкой, прочной и недорогой, благодаря чему на нее возник устойчивый спрос.

Практически одновременно с мебельщиком Лютером фанера была создана русским изобретателем — Огнеславом Степановичем Костовичем, занимавшимся созданием летательных аппаратов и остро нуждавшимся в конструкционном материале для их постройки. В 1881 году он изобрел арборит — материал, состоящий из склеенных между собой поперек волокон листов шпона. Лущильный станок и клей для производства фанеры-арборита Костович также изобрел самостоятельно, причем его фанера обладала высокой устойчивостью к воздействию влаги и не была подвержена гниению.

С момента изобретения и до наших дней технология переработки древесины в фанеру практически не изменилась. Модернизации подверглось управление станками — сейчас оно полностью автоматизировано. Это позволило сократить долю ручного труда в производстве, и, как следствие, повысить качество конечного продукта.

Подготовка сырья

Процесс производства ламинированной фанеры требует тщательного отбора и подготовки сырья. В первую очередь подбираются стволы нужного размера. Для производства стандартной фанеры (1220 × 2440 мм) перерабатываются стволы диаметром 20—40 см и длиной 5,2 м (в дальнейшем такие стволы можно распилить на чураки по 1,3 или 2,6 м, необходимые для производства продольного и поперечного шпона требуемого формата).


Складирование сырья

Основным этапом подготовки является проварка сырья. Она осуществляется в специальном бассейне (открытом или закрытом) в течение 24 часов. Летом температура в бассейне поддерживается на уровне 35÷40 ºС, зимой — 40÷45 ºС. Для повышения качества шпона, из которого впоследствии будет изготовлена фанера, важно, чтобы на этапе проварки соблюдались термический режим и время обработки древесины.


Проварка сырья


Проварочный бассейн

Проваренный фанерный кряж подается в отделение по окорке и распиловке.

Окорка осуществляется следующим образом: специальные ножи окорочного станка надрезают кору и снимают ее лентами по спирали. Снятая кора используется для отопления. Окоренный кряж (практически без коры) проходит через металлодетектор, который помогает обнаружить металлические включения в древесине: гвозди, остатки проволоки, которые могут испортить оборудование. При обнаружении металла на пульт управления станка поступает сигнал, процесс останавливается, а металл удаляется.

После окорки выполняется распиловка. Обработанное сырье пилится на чураки для производства продольного и поперечного шпона.


Подача на распиловку

Производство и обработка шпона

Следующий этап — лущение шпона на специальных станках, где с подготовленного чурака срезается непрерывная тонкая лента шпона. Чем тоньше шпон, тем больше слоев будет в фанере определенной толщины. Чем больше слоев, тем прочнее фанера. Шпон из березы, по сравнению с другими породами древесины, — самый тонкий: 1,2÷1,5 мм против 1,6÷2,6 мм для тополиного шпона или 2,0÷4,0 мм для хвойного шпона.


Лущильная линия

На этапе лущения осуществляется контроль качества шпона: ежедневно отбираются образцы для проверки толщины и ряда других параметров, полученные результаты сравниваются с нормативными. С учетом этих данных производится настройка лущильных станков.

После лущения лента шпона подается на автоматические ножницы, где происходит рубка на форматные листы шпона размером 1,3 × 2,6 м для производства фанеры формата 1220 × 2440 мм. Продольный и поперечный шпон (для последующего склеивания в одном листе фанеры) производится на отдельных лущильных линиях.


Березовый шпон

Разрезанный на форматные листы шпон поступает в сушилку.

Находясь в сушилке, листы шпона обдуваются горячим воздухом. За 8—10 минут из древесины уходит до 90 % влаги. На выходе из сушилки листы шпона укладываются на поддон или попадают на транспортер (в зависимости от конструкции сушилки).

После просушки шпон сортируется по целому ряду параметров, в том числе по наличию выпавших сучков, трещин и т. п. На многих комбинатах на этом этапе используется автоматизированное оборудование: параметры сортов заложены в компьютерную программу, управляющую процессом. При сортировке происходит сканирование поверхности и ее автоматическая оценка, после которой сканер сам управляет раскладкой шпона по стопам. Оператор в данном случае лишь наблюдает за процессом. На этом же этапе оценивается влажность листов. Если шпон оказался недосушенным, он откладывается в отдельную стопу и досушивается позже.

Если на этапе сортировки выявляются дефекты, то листы не утилизируются, а отправляются на починку. Починка шпона может осуществляться как на ручных станках, так и на оборудовании с автоматическим управлением. Автоматические станки позволяют повысить качество фанеры, сократив затраты ручного труда в три раза. После починки шпон вновь сортируется.

Комплектование фанеры

Для получения готовой фанеры необходимо склеить несколько листов шпона между собой. Волокна в соседних слоях шпона располагаются перпендикулярно друг другу, что придает прочность готовому продукту. Полученные листы оказываются стойкими к деформации в любых направлениях. Эта особенность и определяет возможность применения фанеры в опалубочных системах для монолитного строительства.

При производстве березовой фанеры склеивается нечетное количество листов шпона. Между собой листы склеиваются при помощи клея, который изготавливают в специальном смесителе. Клей состоит из мела, воды, смолы, а также древесной или ржаной муки. На современных предприятиях установлено оборудование, которое автоматически контролирует пропорции ингредиентов в соответствии с рецептурой.

На следующем этапе — вальцовке — лист шпона пропускается между двумя валиками, смазанными клеем. Клей равномерно распределяется по обеим поверхностям листа, после чего эти листы отправляются в наборку.


Наборный пакет

В стопе наборного пакета сухой шпон чередуется со шпоном, намазанным клеем. Количество чередующихся листов зависит от толщины фанеры. В конце процесса комплектования одного листа фанеры автомат подает два листа сухого шпона (последний лист предыдущего «сэндвича» и первый следующего), что позволит позже отделить один лист фанеры от другого. Подготовленная таким образом стопа отправляется на подпрессовку.

Холодная подпрессовка пакетов собранного шпона производится непосредственно перед горячим прессованием с целью получения цельных пакетов, удобных для транспортирования и загрузки в горячий пресс. Время холодной подпрессовки составляет 5—10 минут при давлении 1,0—1,5 МПа.


Склейка листов

После этого осуществляется загрузка предварительно склеенных листов в этажерку горячего пресса для окончательного приклеивания при температуре 120—130 ºС и давлении 1,2—1,8 МПа.

После прессования склеенные листы обрезаются с четырех сторон под требуемый формат с точностью до 3 мм.

Далее выполняется шлифование фанеры на станке для выравнивания по толщине и придания гладкости поверхности. Фанера последовательно проходит через шлифовальные ленты с разной зернистостью. После этого фанеру классифицируют по внешнему виду: качество листов оценивает оператор.

Ламинирование поверхности

На заключительном этапе на лист фанеры с двух сторон наносится пленка. Фанера загружается в многопролетный пресс, в котором одновременно могут находиться 15—18 листов продукции. Прессование, в процессе которого пленка схватывается с поверхностью плиты, осуществляется в течение 4,5—10,0 минут при температуре 130—136 ºС. Время прессования зависит от плотности пленки, толщины фанеры и вида покрытия. За счет пленки фанера приобретает дополнительную защиту от воды, механических повреждений, агрессивных сред. Так, из обычной «белой» фанеры получается фанера с покрытием, или ламинированная.

Помимо глянцевой пленки, на ламинированную фанеру может наноситься сетчатое покрытие, обладающее антискользящим эффектом. Такая фанера востребована в транспортном машиностроении и строительстве: она применяется для устройства полов трейлеров и легких коммерческих автомобилей, а также в качестве настилов в строительных лесах.


Ламинирование поверхности

Далее ламинированная фанера попадает на линию обрезки. После этого готовую продукцию сортируют по внешнему виду и геометрическим параметрам и укладывают в пачки. По завершении сортировки пачки фанеры подаются в покрасочную камеру. Здесь на торцы плиты наносится специальная водоэмульсионная краска на акриловой основе. Такое покрытие защищает фанеру от попадания влаги и препятствует разбуханию.


Готовый продукт

Чем лучше прокрашены торцы, тем выше влагостойкость плиты, а значит, больше циклов заливки бетона она сможет выдержать. Особенно это важно для опалубки перекрытий, где фанера подвергается сильным механическим нагрузкам и воздействию агрессивной среды — бетонной смеси.

Если ламинированная фанера хорошо склеена внутри, имеет ровную поверхность, которая покрыта износостойкой пленкой, и защищенные от влаги торцы, она будет долго сохранять свою форму, позволяя многократно применять один и тот же лист фанеры при обустройстве монолитных перекрытий.

Материал подготовлен при поддержке пресс-службы группы компаний «СВЕЗА» (Россия).

Автор: Алексей Стаховский, Стройка. Источник, фото: ГК СВЕЗА.